This cross-sectional study examines changes in hydroxyprogesterone caproate fills from 2010 through 2020.
Publications
2022
Antipsychotic polypharmacy (APP) lacks evidence of effectiveness in the care of schizophrenia or other disorders for which antipsychotic drugs are indicated, also exposing patients to more risks. Authors assessed APP prevalence and APP association with beneficiary race/ethnicity and payer among publicly-insured adults regardless of diagnosis. Retrospective repeated panel study of fee-for-service (FFS) Medicare, Medicaid, and dually-eligible white, black, and Latino adults residing in California, Georgia, Iowa, Mississippi, Oklahoma, South Dakota, or West Virginia, filling antipsychotic prescriptions between July 2008 and June 2013. Primary outcome was any monthly APP utilization. Across states and payers, 11% to 21% of 397,533 antipsychotic users and 12% to 19% of 9,396,741 person-months had some APP utilization. Less than 50% of person-months had a schizophrenia diagnosis and up to 19% had no diagnosed mental illness. Payer modified race/ethnicity effects on APP utilization only in CA; however, the odds of APP utilization remained lower for minorities than for whites. Elsewhere, the odds varied by race/ethnicity only in OK, with Latinos having lower odds than whites (odds ratio 0.76; 95% confidence interval 0.60-0.96). The odds of APP utilization varied by payer in several study states, with odds generally higher for Dual eligibles, although the differences were generally small; the odds also varied by year (lower at study end). APP was frequently utilized but mostly declined over time. APP utilization patterns varied across states, with no consistent association with race/ethnicity and small payer effects. Greater use of APP-reducing strategies are needed, particularly among non-schizophrenia populations.
BACKGROUND: Little is known about how opioid prescribing differs for dental procedures with low, moderate, or high pain or whether that prescribing is associated with continued opioid use.
METHODS: The authors used Pennsylvania Medicaid claims data from 2012 through 2017. They categorized dental procedures into 3 groups of pain (low, moderate, high). Using multivariable logistic regression models with random intercept, the authors estimated the probability of receiving an initial opioid prescription within 7 days before and 3 days after a dental procedure associated with the pain categories and assessed subsequent short- and long-term (4-90 days and 91-365 days, respectively) opioid use.
RESULTS: The authors identified 1,345,360 index dental procedures (among 912,121 enrollees), of which 67.6% were categorized as low pain, 1.6% as moderate pain, and 30.9% as high pain. Predicted probability of an initial opioid prescription was 2.4% (95% CI, 2.4% to 2.5%) for low-pain, 8.3% (95% CI, 7.9% to 8.6%) for moderate-pain, and 31.8% (95% CI, 31.6% to 31.9%) for high-pain procedures. Predicted probabilities for short-term use for those who did not fill versus those who did fill an opioid prescription were 0.9% (95% CI, 0.9% to 1.0%) versus 25.0% (95% CI, 24.5% to 25.6%) for the low-pain, 1.6% (95% CI, 1.4% to 1.8%) versus 16.6% (95% CI, 14.9% to 18.4%) for moderate-pain, and 2.9% (95% CI, 2.8% to 3.0%) versus 13.5% (95% CI, 13.3% to 13.7%) for the high-pain groups.
CONCLUSIONS: Although enrollees undergoing high-pain dental procedures were more likely to fill an initial opioid prescription than their counterparts with low- to moderate-pain procedures, the relative risk of experiencing sustained opioid use (4-90 days postprocedure) was highest in the low-pain group.
PRACTICAL IMPLICATIONS: More attention should be paid to reducing opioid prescribing for dental procedures with low pain risk.
In the opioid research, predicting the risk of overdose or other adverse outcomes from opioid prescription patterns can help health professionals identify high-risk individuals. Challenges may arise in modeling the exposure-time-response association if the intensity, duration, and timing of exposure vary among subjects, and if exposures have a cumulative or latency effect on the risk. Further challenges may arise when the data involve competing risks, where subjects may fail from one of multiple events and failure from one precludes the risk of experiencing others. In this study, we proposed a competing risks regression model via subdistribution hazards to directly estimate the association between longitudinal patterns of opioid exposure and cumulative incidence of opioid overdose. The model incorporated weighted cumulative effects of the exposure and used penalized splines in the partial likelihood equation to estimate the weights flexibly. The proposed model is able to distinguish different opioid prescription patterns even though these patterns have the same overall intensity during the study period. Performance of the model was evaluated through simulation.
Among Medicaid-enrolled pregnant persons with opioid use disorder, one third are diagnosed with hepatitis C virus, but only 6% receive postpartum follow-up or medication treatment.
BACKGROUND AND AIMS: The time lag encountered when accessing health-care data is one major barrier to implementing opioid overdose prediction measures in practice. Little is known regarding how one's opioid overdose risk changes over time. We aimed to identify longitudinal patterns of individual predicted overdose risks among Medicaid beneficiaries after initiation of opioid prescriptions.
DESIGN, SETTING AND PARTICIPANTS: A retrospective cohort study in Pennsylvania, USA among Pennsylvania Medicaid beneficiaries aged 18-64 years who initiated opioid prescriptions between July 2017 and September 2018 (318 585 eligible beneficiaries (mean age = 39 ± 12 years, female = 65.7%, White = 62.2% and Black = 24.9%).
MEASUREMENTS: We first applied a previously developed and validated machine-learning algorithm to obtain risk scores for opioid overdose emergency room or hospital visits in 3-month intervals for each beneficiary who initiated opioid therapy, until disenrollment from Medicaid, death or the end of observation (December 2018). We performed group-based trajectory modeling to identify trajectories of these predicted overdose risk scores over time.
FINDINGS: Among eligible beneficiaries, 0.61% had one or more occurrences of opioid overdose in a median follow-up of 15 months. We identified five unique opioid overdose risk trajectories: three trajectories (accounting for 92% of the cohort) had consistent overdose risk over time, including consistent low-risk (63%), consistent medium-risk (25%) and consistent high-risk (4%) groups; another two trajectories (accounting for 8%) had overdose risks that substantially changed over time, including a group that transitioned from high- to medium-risk (3%) and another group that increased from medium- to high-risk over time (5%).
CONCLUSIONS: More than 90% of Medicaid beneficiaries in Pennsylvania USA with one or more opioid prescriptions had consistent, predicted opioid overdose risks over 15 months. Applying opioid prediction algorithms developed from historical data may not be a major barrier to implementation in practice for the large majority of individuals.
BACKGROUND: Little is known about whether machine-learning algorithms developed to predict opioid overdose using earlier years and from a single state will perform as well when applied to other populations. We aimed to develop a machine-learning algorithm to predict 3-month risk of opioid overdose using Pennsylvania Medicaid data and externally validated it in two data sources (ie, later years of Pennsylvania Medicaid data and data from a different state).
METHODS: This prognostic modelling study developed and validated a machine-learning algorithm to predict overdose in Medicaid beneficiaries with one or more opioid prescription in Pennsylvania and Arizona, USA. To predict risk of hospital or emergency department visits for overdose in the subsequent 3 months, we measured 284 potential predictors from pharmaceutical and health-care encounter claims data in 3-month periods, starting 3 months before the first opioid prescription and continuing until loss to follow-up or study end. We developed and internally validated a gradient-boosting machine algorithm to predict overdose using 2013-16 Pennsylvania Medicaid data (n=639 693). We externally validated the model using (1) 2017-18 Pennsylvania Medicaid data (n=318 585) and (2) 2015-17 Arizona Medicaid data (n=391 959). We reported several prediction performance metrics (eg, C-statistic, positive predictive value). Beneficiaries were stratified into risk-score subgroups to support clinical use.
FINDINGS: A total of 8641 (1·35%) 2013-16 Pennsylvania Medicaid beneficiaries, 2705 (0·85%) 2017-18 Pennsylvania Medicaid beneficiaries, and 2410 (0·61%) 2015-17 Arizona beneficiaries had one or more overdose during the study period. C-statistics for the algorithm predicting 3-month overdoses developed from the 2013-16 Pennsylvania training dataset and validated on the 2013-16 Pennsylvania internal validation dataset, 2017-18 Pennsylvania external validation dataset, and 2015-17 Arizona external validation dataset were 0·841 (95% CI 0·835-0·847), 0·828 (0·822-0·834), and 0·817 (0·807-0·826), respectively. In external validation datasets, 71 361 (22·4%) of 318 585 2017-18 Pennsylvania beneficiaries were in high-risk subgroups (positive predictive value of 0·38-4·08%; capturing 73% of overdoses in the subsequent 3 months) and 40 041 (10%) of 391 959 2015-17 Arizona beneficiaries were in high-risk subgroups (positive predictive value of 0·19-1·97%; capturing 55% of overdoses). Lower risk subgroups in both validation datasets had few individuals (≤0·2%) with an overdose.
INTERPRETATION: A machine-learning algorithm predicting opioid overdose derived from Pennsylvania Medicaid data performed well in external validation with more recent Pennsylvania data and with Arizona Medicaid data. The algorithm might be valuable for overdose risk prediction and stratification in Medicaid beneficiaries.
FUNDING: National Institute of Health, National Institute on Drug Abuse, National Institute on Aging.